Tricyclic alkaloid hepatotoxin. Exhibits a completely different mechanism of toxicity than microcystins. Protein synthesis inhibitor. Might be carcinogenic. Inhibits pyrimidine nucleotide synthesis.
Product Details
Formula: | C15H21N5O7S |
|
MW: | 415.4 |
|
Source: | Isolated from Cylindrospermopsis raciborskii. |
|
CAS: | 143545-90-8 |
|
RTECS: | UV9104310 |
|
Purity: | ≥95% (HPLC) |
|
Identity: | Identity determined by MS. |
|
Appearance: | Glassy solid. |
|
Solubility: | Soluble in water, methanol or DMSO. |
|
Shipping: | Ambient |
|
Long Term Storage: | -20°C |
|
Regulatory Status: | RUO - Research Use Only |
|
Please mouse over
Product Literature References
The cyanotoxin cylindrospermopsin slows down cell cycle progression and extends metaphase duration in immortalised human airway epithelial cells: J. Vennmann, et al.; Toxicon
209, 28 (2022),
Abstract;
Treatment of cylindrospermopsin by hydroxyl and sulfate radicals: Does degradation equal detoxification?: M. Schneider, et al.; J. Hazard. Mater.
424, 127447 (2022),
Abstract;
Influence of refrigeration and freezing in Microcystins and Cylindrospermopsin concentrations on fish muscle of tilapia (Oreochromis niloticus) and tench (Tinca tinca): L. Diez-Quijada, et al.; Food Chem. Toxicol.
158, 112673 (2021),
Abstract;
Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions: M.A. Chia, et al.; Ecotoxicol. Environ. Saf.
142, 189 (2017),
Abstract;
Intestinal transport of Cylindrospermopsin using the Caco-2 cell line: S. Pichardo; Toxicol. In Vitro
38, 142 (2017),
Application(s): Creation of stock solution of CYN,
Abstract;
Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: potential implications for neurodegenerative diseases: L. Takser, et al.; Toxicol. Rep.
3, 180 (2016),
Application(s): Cell culture,
Abstract;
Inability to detect free cylindrospermopsin in spiked aquatic organism extracts plausibly suggests protein binding: M. Esterhyuzen-Londt, et al.; Toxicon.
122, 89 (2016),
Application(s): Cell culture,
Abstract;
Oxidative stress responses in the animal model, Daphnia pulex exposed to a natural bloom extract versus artificial cyanotoxin mixtures: M. Esterhuizen-Londt, et al.; Aquat. Toxicol.
179, 151 (2016),
Abstract;
Beneficial effects of vitamin E supplementation against the oxidative stress on Cylindrospermopsin-exposed tilapia (Oreochromis niloticus): R. Guzman-Guillen, et al.; Toxicon
104, 34 (2015),
Abstract;
Cylindrospermopsin induces neurotoxicity in tilapia fish (Oreochromis niloticus) exposed to Aphanizomenon ovalisporum: R. Guzmán-Guillén, et al.; Aquat. Toxicol.
161C, 17 (2015),
Abstract;
Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.): M. Freitas, et al.; Ecotoxicol. Environ. Saf.
116, 59 (2015),
Application(s): HPLC, Exposure to lettuce plants,
Abstract;
Toxin Resistance in Aquatic Fungi Poses Environmentally Friendly Remediation Possibilities: A Study on the Growth Responses and Biosorption Potential of Mucor hiemalis EH5 against Cyanobacterial Toxins: E. Balsano, et al.; Int. J. Water Wastewater Treat.
1, (2015),
Full Text
Cylindrospermopsin degradation in sediments - The role of temperature, redox conditions, and dissolved organic carbon: S. Klitzke & J. Fastner; Water Res.
46, 1549 (2012),
Abstract;
Time-dependent histopathological changes induced in Tilapia (Oreochromis niloticus) after acute exposure to pure cylindrospermopsin by oral and intraperitoneal route: D. Gutierrez-Praena, et al.; Ecotoxicol. Environ. Saf.
76, 102 (2012),
Abstract;
Acute effects of pure cylindrospermopsin on the activity and transcription of antioxidant enzymes in tilapia (Oreochromis niloticus) exposed by gavage: M. Puerto, et al.; Ecotoxicology
20, 1852 (2011),
Abstract;
Modulation of gap-junctional intercellular communication by a series of cyanobacterial samples from nature and laboratory cultures: K. Novakova, et al.; Toxicon
58, 76 (2011),
Abstract;
Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?: L. Blaha, et al.; Toxicon
55, 126 (2010),
Abstract;
Full Text
The cyanobacterial toxin cylindrospermopsin inhibits pyrimidine nucleotide synthesis and alters cholesterol distribution in mice: M. Reisner, et al.; Toxicol. Sci.
82, 620 (2004),
Abstract;
The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin: D.J. Griffiths and M.L. Saker; Environ. Toxicol.
18, 78 (2003), Review,
Abstract;
Preliminary evidence for in vivo tumour initiation by oral administration of extracts of the blue-green alga cylindrospermopsis raciborskii containing the toxin cylindrospermopsin: I.R. Falconer & A.R. Humpage; Environ. Toxicol.
16, 192 (2001),
Abstract;
Cylindrospermopsin, a cyanobacterial alkaloid: evaluation of its toxicologic activity: G.R. Shaw, et al.; Ther. Drug Monit.
22, 89 (2000),
Abstract;
Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake: P.R. Hawkins, et al.; Toxicon.
35, 341 (1997),
Abstract;
Cylindrospermopsin, a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii: I. Ohtani, et al.; JACS
114, 7941 (1992),
Full Text
Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir: P.R. Hawkins, et al.; Appl. Environ. Microbiol.
50, 1292 (1985),
Abstract;
Full Text