Online Purchasing Account You are logged on as Guest. LoginRegister a New AccountShopping cart (Empty)
United States 

Quantifying Autophagy by Flow Cytometry Revealed a Link to Leukemic Tumor Growth

Posted By
Tags: Autophagy, Cancer


Flow cytometry is a powerful technology for investigating many aspects of cell biology and for isolating cells of interest. Flow cytometry utilizes highly focused, extremely bright beams of light (usually from lasers) to directly reveal aspects of cells (e.g. size and granularity) by the way light is scattered, or indirectly by introducing fluorescent probes to cell compartments (e.g. through DNA binding dyes that stain nuclei or fluorescently-labeled antibodies that specifically detect cellular proteins). The power of flow cytometry derives from the fact that it quantitatively analyzes individual cells, thus permitting the identification of subpopulations within a sample. The power of single cell analysis is compounded by the ability to measure multiple parameters simultaneously on each individual cell, to do this very fast (in excess of 20,000 cells/second), and to isolate/purify/sort desired subpopulations (up to 4 simultaneously). One of the many uses of flow cytometry today is the analysis of autophagy by measuring autophagic flux and quantifying the content of autophagic vesicles in cells. Autophagy is a catabolic delivery pathway for excess or damaged cytoplasmic constituents to the lysosomes where macromolecules are broken down and their components freed for anabolic activities. Upon induction following metabolic stress, autophagy maintains mitochondrial health and metabolic pathways being induced following metabolic stress under the control of the mTOR complex 1 (mTORC1). Under favorable conditions, activated mTORC1 signals for cell growth, promotion of translation, cell cycle progression, and glycolysis while inhibiting autophagy. To maximize cell mass during proliferation, suppression of self-catabolism may be vital for growth activities and indeed, it was found that induction of autophagy prolongs cell survival at the cost of cell size and growth.

Activation of the Akt/mTOR pathway is a common feature of cancers, including leukemias and is required for proliferation in acute myeloid leukemia (AML) models. Knockout of autophagy genes in mice is associated with hyper-proliferation in some tissues and eventual tumor development. Previous studies indicated that mice without the autophagy gene Atg7 in the hematopoietic system develop pre-leukemic myeloproliferation. However, it remains unclear how Atg7 promotes cell proliferation and whether this is an Atg7-specific function. With the literature demonstrating both tumor-promoting and -inhibiting roles for autophagy in leukemia, its involvement in the biology of cancer cells is still controversial. It is, however, well accepted that transformation events leading to AML may occur at the stem or progenitor cell stage. Hematopoietic stem cells (HSCs) strike a fine balance between quiescence, self-renewal, and differentiation. When this balance is perturbed, the consequences may include biased differentiation and/or hematopoietic malignancies. In steady-state hematopoiesis, the majority of HSCs are quiescent. Quiescent cells are particularly hardy and able to survive long periods of metabolic stress. HSCs downregulate protein synthesis and activate pathways that sustain them during periods of non-division. Therefore, autophagy may be required for maintenance of the long-lived HSC, as their slow turnover prevents the dilution of damaged macromolecules to daughter cells, similar to a post-mitotic neuron or cardiomyocyte. Moreover, autophagy controls mitochondrial quality.

Using Enzo’s CYTO-ID® Autophagy detection kit and flow cytometry analysis, Dr. Watson and colleagues from John Radcliffe Hospital Oxford found that autophagy levels were highest in the most immature human and mouse hematopoietic stem and progenitor cells (HSPCs). They also demonstrated that loss of Atg5 results in an identical HSPC phenotype as loss of Atg7, confirming a general role for autophagy in HSPC regulation. Compared to more committed/mature hematopoietic cells, healthy human and mouse HSCs displayed enhanced basal autophagic flux, limiting mitochondrial damage and reactive oxygen species in this long-lived population. Moreover, human AML blasts typically only displaying heterozygous Atg deletions readily showed reduced expression of autophagy genes and displayed decreased autophagic flux with accumulation of unhealthy mitochondria. Also, heterozygous loss of autophagy in an MLL-ENL model of AML led to increased proliferation in vitro, a glycolytic shift, and more aggressive leukemias in vivo. Taken together these data are compatible with autophagy limiting leukemic transformation. With autophagy gene losses also identified in multiple other malignancies, these findings point to low autophagy providing a general advantage for tumor growth.

From our complex CELLESTIAL® portfolio of fluorescent probes and assay kits for cellular analysis to our large portfolio of antibodies validated in flow cytometry, Enzo Life Sciences provides a complete set of flow cytometry tools, some of which are described below.

Share this TechNote

Never miss a new TechNote!

Receive our TechNotes as soon as they are published.


Follow Us!

 
comments powered by Disqus

Reference:

  1. A.S. Watson, et al. Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov. (2015) 1: 15008.

Related Products

HSP70/HSP72 monoclonal antibody (C92F3A-5) (FITC conjugate) 

Purified from ascites., Flow Cytometry | Print as PDF
 
ADI-SPA-810FI-D 50 µg 289.00 USD
 
ADI-SPA-810FI-F 200 µg 553.00 USD
Do you need bulk/larger quantities?
 

HSC70/HSP73 monoclonal antibody (1B5) (PE conjugate) 

Purified from ascites., Flow Cytometry | Print as PDF
 
ADI-SPA-815PE-E 100 µg 437.00 USD
Do you need bulk/larger quantities?
 

HSC70/HSP70 monoclonal antibody (N27F3-4) (DyLight™ 488 conjugate) 

Purified from mouse ascites., Flow Cytometry | Print as PDF
 
ADI-SPA-820-488-E 100 µg 441.00 USD
Do you need bulk/larger quantities?
 

CD14 (human) monoclonal antibody (biG 2/RoMo-1) 

ELISA, Flow Cytometry, IP | Print as PDF
 
ALX-804-498-C100 100 µg 342.00 USD
Do you need bulk/larger quantities?
 

CD3 (human) monoclonal antibody (MEM-57) 

Flow Cytometry, IP, FUNC | Print as PDF
 
ALX-805-057-C100 100 µg 256.00 USD
Do you need bulk/larger quantities?
 

HIF-1α monoclonal antibody (H1α67) 

ELISA, Flow Cytometry, ICC, IF, IHC, IHC (FS), IHC (PS), IP, WB | Print as PDF
 
BML-SA287-0100 100 µl 519.00 USD
Do you need bulk/larger quantities?
 

Bak (human) monoclonal antibody (TC100) 

Flow Cytometry, ICC, WB | Print as PDF
 
BML-SA298-0050 50 µg 384.00 USD
Do you need bulk/larger quantities?
 

GFP-CERTIFIED® Apoptosis/Necrosis detection kit 

Multiplex assay that distinguishes between healthy, early apoptotic, late apoptotic and necrotic cells, compatible with GFP and other fluorescent probes (blue or cyan)
Flow Cytometry, Fluorescence microscopy, Fluorescent detection | Print as PDF
 
ENZ-51002-25 25 assays 204.00 USD
 
ENZ-51002-100 100 assays 476.00 USD
Do you need bulk/larger quantities?
 

TOTAL-NUCLEAR-ID® green/red nucleolar/nuclear detection kit  

Fluorescence microscopy, Fluorescent detection | Print as PDF
 
ENZ-51006-500 1 Kit 319.00 USD
Do you need bulk/larger quantities?
 

NUCLEAR-ID® Red cell cycle kit (GFP-CERTIFIED®) 

Convenient kit for studying cell cycle progression by various applications
Flow Cytometry, Fluorescence microscopy | Print as PDF
 
ENZ-51008-100 1 Kit 447.00 USD
Do you need bulk/larger quantities?
 

ROS-ID® Total ROS/Superoxide detection kit 

Widely cited kit to detect total ROS and Superoxide in live cells by microscopy and flow cytometry applications
Flow Cytometry, Fluorescence microscopy, Fluorescent detection, HTS | Print as PDF
 
ENZ-51010 1 Kit 329.00 USD
Do you need bulk/larger quantities?
 

ROS-ID® Total ROS detection kit 

Widely cited kit to measure global levels of ROS in live cells
Flow Cytometry, Fluorescence microscopy, Fluorescent detection, HTS | Print as PDF
 
ENZ-51011 1 Kit 220.00 USD
Do you need bulk/larger quantities?
 

ROS-ID® Superoxide detection kit 

Flow Cytometry, Fluorescence microscopy, Fluorescent detection, HTS | Print as PDF
 
ENZ-51012 1 Kit 224.00 USD
Do you need bulk/larger quantities?
 

NUCLEAR-ID® Green cell cycle kit  

Cell Cycle Results Independent of Incubation Time, Temperature, Dye and Cell Concentrations
Flow Cytometry, Fluorescence microscopy | Print as PDF
 
ENZ-51014-100 1 Kit 398.00 USD
Do you need bulk/larger quantities?
 

MITO-ID® Membrane potential detection kit  

The only assay that monitors energetic status using a simple mix-and-read, no-wash protocol
Flow Cytometry, Fluorescence microscopy, Fluorescent detection, HTS | Print as PDF
 
ENZ-51018-0025 25 tests 210.00 USD
 
ENZ-51018-K100 100 tests 581.00 USD
Do you need bulk/larger quantities?
 

NUCLEAR-ID® Green chromatin condensation detection kit  

A highly permeable green-emitting  dye for enhanced detection of apoptosis-induced chromatin condensation
Flow Cytometry, Fluorescence microscopy, Fluorescent detection | Print as PDF
 
ENZ-51021-K200 1 Kit 372.00 USD
Do you need bulk/larger quantities?
 

EFLUXX-ID® Green multidrug resistance assay kit 

Simple No-wash Assay for  Simultaneous Monitoring of All 3 Major ABC Transporter Proteins – MDR, BCRP & MRP
Flow Cytometry, Fluorescence microscopy | Print as PDF
 
ENZ-51029-K100 1 Kit 706.00 USD
Do you need bulk/larger quantities?
 

EFLUXX-ID® Gold multidrug resistance assay kit 

Simple no-wash assays for simultaneous monitoring of all 3 major  ABC transporter proteins – MDR, BCRP & MRP
Flow Cytometry, Fluorescence microscopy | Print as PDF
 
ENZ-51030-K100 1 Kit 691.00 USD
Do you need bulk/larger quantities?
 

CYTO-ID® Autophagy detection kit 

A no-transfection, quantitative assay for monitoring autophagy in live cells
Flow Cytometry, Fluorescence microscopy, Fluorescent detection, HTS | Print as PDF
 
ENZ-51031-0050 50 tests 268.00 USD
 
ENZ-51031-K200 200 tests 553.00 USD
Do you need bulk/larger quantities?
 

PROTEOSTAT® Aggresome detection kit  

Robust, quantitative detection of aggresomes relevant to the study of neurodegenerative disease, liver disease and  toxicology
Flow Cytometry, Fluorescence microscopy, Fluorescent detection | Print as PDF
 
ENZ-51035-0025 25 tests 142.00 USD
 
ENZ-51035-K100 100 tests 409.00 USD
Do you need bulk/larger quantities?
 

CYTO-ID® Green long-term cell tracer kit 

Live cell fluorescent labeling over extended time periods with no apparent toxic effects
Flow Cytometry, Fluorescence microscopy, Fluorescent detection | Print as PDF
 
ENZ-51036-K025 1 Kit 267.00 USD
Do you need bulk/larger quantities?
 

CYTO-ID® Red long-term cell tracer kit  

Live  cell fluorescent labeling over extended time periods with no apparent toxic effects
Flow Cytometry, Fluorescence microscopy, Fluorescent detection | Print as PDF
 
ENZ-51037-K025 1 Kit 253.00 USD
Do you need bulk/larger quantities?
 

ROS-ID® Hypoxia/Oxidative stress detection kit 

Widely cited kit for the simultaneous analysis of hypoxia and oxidative stress by microscopy and flow cytometry applications
Flow Cytometry, Fluorescence microscopy, Fluorescent detection, HTS | Print as PDF
 
ENZ-51042-0125 125 tests 136.00 USD
 
ENZ-51042-K500 500 tests 476.00 USD
Do you need bulk/larger quantities?
 

Cellular senescence live cell analysis assay 

Simple assay to quantify senescence-associated β-galactosidase activity in live cells using flow cytometry
Flow Cytometry | Print as PDF
 
ENZ-KIT130-0010 10 assays 393.00 USD
Do you need bulk/larger quantities?
 

Recommend this page