Online Purchasing Account You are logged on as Guest. LoginRegister a New AccountShopping cart (Empty)
United States 

UbcH5c (human), (recombinant) (His-tag)

 
BML-UW9070-0100 100 µg 258.00 USD
Do you need bulk/larger quantities?
 

Product Specification

MW:~16kDa
 
Source:Produced in E. coli.
 
UniProt ID:P61077
 
Formulation:Liquid. In TRIS-HCl, pH 7.5, containing 1mM DTT.
 
Purity:≥90% (SDS-PAGE)
 
Biological Activity:The His6-tagged fusion proteins of UbcH5a, UbcH5b and UbcH5c all charge and support ubiquitinylation in vitro. Unlike their GST-tagged counterparts, the His6-tagged UbcH5 family members all appear to form thiol ester conjugates with ubiquitin at a similar rate under similar conditions.
 
Application Notes:Useful for in vitro ubiquitinylation reactions. Typical enzyme concentration to support conjugation in vitro is 100nM to 1μM depending upon conditions. The His-tagged version of this enzyme is not susceptible to self-ubiquitinylation, which can occur with GST-tagged versions.
 
Shipping:Shipped on Dry Ice
 
Long Term Storage:-80°C
 
Scientific Background:A number of E2s in Saccharomyces cerevisiae and their homologues have been identified. One such family of E2s is the UBC4/5, characterised as essential for the degradation of short-lived, regulatory and abnormal proteins. Protein levels of S. cerevisiae UbC4/5 are up-regulated in response to stress, and their loss results in severe effects on cellular functions.

A human gene product that is 79% identical to S. cerevisiae UBC4/5 in amino-acid sequence was identified as UbcH5a. In addition, two other human members of this highly conserved E2 class were also cloned and designated as UbcH5b and UbcH5c, having 88% and 89% identity to UbcH5a, respectively. Members of the UbcH5a/b/c are the most active class of E2s in cell extracts. The importance of this enzyme class is underscored by the critical role of UBC4/5 in S. cerevisiae. UbcH5a stimulates the conjugation of ubiquitin to the tumour-repressor p53 in the presence of E6-AP and E6. Moreover, UbcH5 family is implicated in c-fos recognition, the modulation of which is controlled by the ubiquitin-proteasome pathway. UbcH5b and UbcH5c are associated with the signal-induced conjugation and subsequent degradation of IkBα in the presence of the SCF complexes. UbcH5c also catalyses the ubiquitination leading to the processing of p105 precursor to form p50, a subunit of the heterodimeric transcription factor NF-kB. The range and diversity of substrates and E3s with which this class of E2 enzymes interact, suggest their complex roles in cellular functions require to be studied further.
 

General Literature References

Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha: H. Gonen et al.; J. Biol. Chem. 274, 14823 (1999),
Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor kappaB1. : Coux, O. and Goldberg, A.L.; J. Biol. Chem. 273, 8820-8 (1998),
Degradation of the proto-oncogene c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterisation of the conjugating enzymes: I. Stancovski et al.; Mol. Cel. Biol. 15, 7106 (1995),
Identification of a family of closely related human ubiquitin conjugating enzymes: J.P. Jensen et al.; J. Biol. Chem. 270, 30408 (1995),
Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. : Scheffner, M.; Proc. Natl. Acad. Sci. USA 91, 8797-8801 (1994),
The ubiquitin-conjugation system. : Jentsch, S. ; Annu. Rev. Genet. 22, 179-207 (1992),
Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. : Seufert, W. and Jentsch, S.; EMBO J. 9, 543-50 (1990),

Related Literature

Brochures
Stem Cells
Stem Cells
Download as PDF

Catalogs
Ubiquitin & UBL Signaling Catalog
Ubiquitin & UBL Signaling Catalog
Download as PDF

All new literature pieces

Recommend this page

 
For Research Use Only. Not for use in diagnostic procedures.
Keep in touch

©2017 Enzo Life Sciences, Inc.,