HSP27 (human), EIA kit

For the detection and quantitation of Hsp27 in cell lysates, tissue extracts, serum, and plasma

Catalog Number: ADI-EKS-500

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES.
ASSAY DESIGN

The HSP27 (human), EIA kit provides a method to detect and quantitate Hsp27 in samples of human origin. This assay allows for reproducible, accurate and precise determination of phosphorylated and non-phosphorylated Hsp27 from cell lysates, tissue extracts, serum, and plasma. The assay is specific for Hsp27 and does not detect other small heat shock protein family members, such as Hsp25 or αB-crystallin.

The Hsp27 ELISA Kit is a quantitative sandwich immunoassay. A mouse monoclonal antibody specific for Hsp27 is pre-coated on the wells of the provided Anti-Hsp27 Immunoassay Plate. Hsp27 is captured by the immobilized antibody and is detected with an Hsp27 specific, rabbit polyclonal antibody. The rabbit polyclonal antibody is subsequently bound by a horseradish peroxidase conjugated anti-rabbit IgG secondary antibody. The assay is developed with tetramethylbenzidine (TMB) substrate and a blue color develops in proportion to the amount of captured Hsp27. The color development is stopped with acid stop solution which converts the endpoint color to yellow. The intensity of the color is measured in a microplate reader at 450nm. Hsp27 concentrations from the sample are quantitated by interpolating absorbance readings from a standard curve generated with the calibrated Hsp27 protein standard provided.
SCIENTIFIC OVERVIEW

Human Heat shock protein 27 (Hsp27) is a member of the highly conserved mammalian small Hsp family. Hsp27 is expressed constitutively in many tissues and its expression is increased to high levels after various types of stress including elevated temperatures, toxic metals, drugs and oxidants. Hsp27 is relatively abundant in all types of cells and it co-localizes with actin filaments in cardiac, skeletal and smooth muscle. Hsp27 exists as both large oligomers that are proposed to have chaperone-like activity and as smaller oligomers that bind and cap barbed end microfilaments and stabilize them. Hsp27 has been shown to be important in many cell functions such as cell survival during stress, apoptosis and microfilament organization in response to growth factors or stress as well as smooth muscle contraction. Hsp27 becomes phosphorylated in response to heat shock and in response to different stimuli such as cytokines, growth factors and peptide hormones. Mitogen–activated protein (MAP) kinase-activated protein kinase-2 (MAPKAPK-2) phosphorylates Hsp27 protein on Ser15 and Ser82 as a result of the activation of the p38 MAP kinase pathway. Phosphorylation of Hsp27 is accompanied by a decrease in the size of Hsp27 oligomers and modulation of actin filament assembly, migration and contraction.
ASSAY PROCEDURE SUMMARY

1. Bring to room temperature: Hsp27 Clear Microtiter Plate, 20X Wash Buffer, Sample Diluent, Antibody Diluent, HRP Conjugate Diluent, TMB Substrate and Stop Solution 2.
2. Prepare Recombinant Hsp27 Standard and samples in Sample Diluent.
3. Add 100μL prepared standards and samples in duplicate to wells of Hsp27 Clear Microtiter Plate. Cover immunoassay plate.
4. Incubate plate at room temperature for 1 hour.
5. Wash wells 6X with 1X Wash Buffer.
6. Add 100μL diluted Anti-Hsp27 to each well. Cover immunoassay plate.
7. Incubate plate at room temperature for 1 hour.
8. Wash wells 6X with 1X Wash Buffer.
9. Add 100μL diluted HRP Conjugate to each well. Cover immunoassay plate.
10. Incubate plate at room temperature for 30 minutes.
11. Wash wells 6X with 1X Wash Buffer.
12. Add 100μL TMB Substrate to each well.
13. Incubate at room temperature for 15 minutes (preferably in the dark).
14. Add 100μL Stop Solution 2 to each well.
15. Measure absorbance at 450nm.
16. Plot the Hsp27 standard curve and calculate Hsp27 sample concentrations.
B. MATERIALS

PRECAUTIONS

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

• The activity of the HRP Conjugate (part# 80-1557) is affected by nucleophiles such as azide, cyanide and hydroxylamine.

• The Stop Solution 2 (part# 80-0377) is a 1N solution of hydrochloric acid. This solution is corrosive; please use caution when handling.

Please read the complete kit insert before performing this assay.
MATERIALS PROVIDED

The HSP27 (human), EIA kit contains the following components in sufficient quantities for 96 wells. These reagents are sufficient to assay one standard curve and 39 samples in duplicate or two standard curves and 30 samples in duplicate.

<table>
<thead>
<tr>
<th>PART #</th>
<th>COMPONENT</th>
<th>SIZE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-1560</td>
<td>Hsp27 Clear Microtiter Plate</td>
<td>96 well plate</td>
<td>12 x 8 removable strips and plate frame; pre-coated with mouse monoclonal antibody specific for Hsp27</td>
</tr>
<tr>
<td>80-1526</td>
<td>5X Hsp27 Extraction Reagent</td>
<td>10mL</td>
<td>Concentrated buffer for preparation of cell and tissue extracts</td>
</tr>
<tr>
<td>80-1559</td>
<td>Recombinant Hsp27 Standard</td>
<td>25μL</td>
<td>5μg/mL stock solution of Recombinant Hsp27 protein</td>
</tr>
<tr>
<td>80-1783</td>
<td>Sample Diluent*</td>
<td>50mL</td>
<td>Buffer to dilute standards and samples</td>
</tr>
<tr>
<td>80-1287</td>
<td>20X Wash Buffer</td>
<td>100mL</td>
<td>Concentrated solution of buffer and surfactant</td>
</tr>
<tr>
<td>80-1558</td>
<td>Anti-Hsp27</td>
<td>25μL</td>
<td>Rabbit polyclonal antibody specific for Hsp27</td>
</tr>
<tr>
<td>80-1782</td>
<td>Antibody Diluent</td>
<td>11mL</td>
<td>Buffer for dilution of Anti-Hsp27</td>
</tr>
<tr>
<td>80-1557</td>
<td>HRP Conjugate</td>
<td>25μL</td>
<td>Horseradish peroxidase conjugated anti-rabbit IgG</td>
</tr>
<tr>
<td>80-1508</td>
<td>HRP Conjugate Diluent</td>
<td>11mL</td>
<td>Buffer for dilution of Anti-Rabbit IgG: HRP Conjugate</td>
</tr>
<tr>
<td>80-0350</td>
<td>TMB Substrate</td>
<td>10mL</td>
<td>Stabilized tetramethylbenzidine substrate</td>
</tr>
<tr>
<td>80-0377</td>
<td>Stop Solution 2</td>
<td>10mL</td>
<td>Acid stop solution to stop color reaction</td>
</tr>
</tbody>
</table>

* Note: new colorless sample diluent will not affect sample results
STORAGE OF MATERIALS

All reagents are stable as supplied at 4°C, except the **Recombinant Hsp27 Standard**, which should be stored at -20°C. For optimum storage, the **Recombinant Hsp27 Standard** should be aliquotted into smaller portions and stored at -20°C.

Unused wells of the **Hsp27 Clear Microtiter Plate** should be resealed in the foil pouch provided and stored at 4°C until the kit's expiry date.

MATERIALS REQUIRED BUT NOT PROVIDED

- Deionized or distilled water
- Precision pipettors capable of accurately delivering 1 to 1000µL
- Disposable pipette tips
- 5, 10, 25mL pipettes for reagent preparation
- 1L Graduated cylinder
- Squirt bottle, manifold dispenser, or automated microtiter plate washer
- Disposable polypropylene tubes
- Microtiter plate reader capable of measuring absorbance at 450nm
- Adhesive plate sealers or plastic wrap
CRITICAL ASSAY PARAMETERS AND NOTES

• The HSP27 (human), EIA kit contains a pre-coated microtiter plate (Hsp27 Clear Microtiter Plate) with removable wells to allow assaying on two separate occasions.

• A 5X Hsp27 Extraction Reagent has been included in this assay. Use of other lysis or extraction buffers may interfere with the performance of the assay.

• Run both standards and samples in duplicate.

• Include a standard curve each time the assay is performed.

• The following kit components should be brought to room temperature prior to use: Hsp27 Clear Microtiter Plate, Sample Diluent, Wash Buffer, Antibody Diluent, HRP Conjugate Diluent, TMB Substrate, Stop Solution 2.

• Absorbance is a function of the incubation time. Therefore, prior to starting the assay it is recommended that all reagents are ready to use and all required strip-wells secured in the microtiter frame. This will ensure equal elapsed time for each pipetting step, without interruption.

• For each step in the procedure, total dispensing time for addition of reagents to the assay plate should not exceed 15 minutes.

• Mix all reagents and samples gently, yet thoroughly, prior to use. Avoid foaming of reagents.

• To avoid cross contamination, change disposable pipette tips between the addition of each standard, samples, and reagents. Use separate reagent troughs/reservoirs for each reagent.

C. PERFORMING THE ASSAY
PERFORMING THE ASSAY

- This assay requires pipetting of small volumes. To minimize imprecision caused by pipetting, ensure that pipettors are calibrated.

- Consistent, thorough washing of each well is critical. If using an automatic washer, check washing head before use. If washing manually, ensure all wells are completely filled at each wash. Air bubbles should be avoided.

- Exercise appropriate laboratory safety precautions when performing this assay.

- In this protocol, room temperature refers to 20-28°C. The room temperature should remain within this range throughout the assay.

NOTE: The components in each kit lot # have been quality assured and warranted in this specific combination only; please do not mix them with components from other kit lot #s.
SAMPLE PREPARATION

1. EXTRACTION OF SAMPLES

Suggested protocols for the preparation of cell lysates, tissue extracts, serum, and plasma may be found in Appendices I-III, respectively (pages 22 to 24). Investigators may use alternative methods of sample preparation, however, it is recommended that the 5X Hsp27 Extraction Reagent provided in this kit be diluted to 1X and used as the lysis buffer for cells and tissue.

Use of alternative lysis buffers may contain components that could interfere and compromise the performance of the assay, producing inaccurate results. For a complete list of known chemical compatibility within this assay, please refer to Appendix IV (page 25).

2. DILUTION OF SAMPLES

Samples should be prepared as described in Appendix I-III. Cell and tissue lysates may be diluted 1:50 (v/v) in Sample Diluent as a suggested starting dilution only. Serum and plasma may be diluted 1:20 (v/v) in Sample Diluent as a suggested starting dilution only. Additional dilutions may be necessary to ensure that sample values are within the range of the standard curve. Users must determine the optimal sample dilutions for their particular experiments.

a) Dilute prepared samples (i.e. cell lysates, tissue extracts, serum, and plasma) in Sample Diluent. Prepare at least 250µL of diluted sample to permit assaying in duplicate.

b) Mix thoroughly.

c) Samples are now ready to be used in the Assay Procedure (see page 15). Samples may be left at room temperature while reagents are being prepared (see page 11).
REAGENT PREPARATION

**NOTE:** All reagents should be freshly prepared prior to use. Once prepared, reagents should be kept at room temperature for the duration of the assay.

**NOTE:** The preparation of the reagents is based on using the complete 1 X 96 well assay, unless otherwise noted. If only a portion of the immunoassay plate is to be used, please store all components as previously described (see page 7).

1. TEMPERATURE OF REAGENTS

   Bring the following reagents to room temperature prior to use:
   - **Hsp27 Clear Microtiter Plate** (Part#: 80-1560)
   - **Sample Diluent** (Part#: 80-1783)
   - **Wash Buffer** (Part#: 80-1287)
   - **Antibody Diluent** (Part#: 80-1782)
   - **HRP Conjugate Diluent** (Part#: 80-1508)
   - **TMB Substrate** (Part#: 80-0350)
   - **Stop Solution 2** (Part#: 80-0377)

2. RECOMBINANT HSP27 STANDARD (Part#: 80-1559)

   **NOTE:** The Hsp27 Standard will withstand two freeze/thaw cycles to allow preparation of a second standard curve. However, to ensure product integrity, it is suggested that the Hsp27 Standard be aliquotted into smaller portions and any remaining Hsp27 Standard be discarded after the second use.

   The **Hsp27 Standard** is used to generate a standard curve with 7 points, ranging from 0.39 – 25ng/mL.

   a) Centrifuge the **Hsp27 Standard** vial before removing the cap. This process will assure that all of the standard is collected and available for use.

   b) Label seven (7) polypropylene tubes, each with one of the following standard values: 25ng/mL, 12.5ng/mL, 6.25ng/mL, 3.125ng/mL, 1.56ng/mL, 0.78ng/mL, 0.39ng/mL.
c) Add 500µL of **Sample Diluent** to Tube #1.
d) Add 250µL of **Sample Diluent** to Tube #2, 3, 4, 5, 6 and 7.
e) Add 2.5µL of the **Hsp27 Standard** stock solution (5µg/mL) to Tube #1.
f) Mix thoroughly.
g) Transfer 250µL from Tube#1 to Tube #2.
h) Mix thoroughly.
i) Similarly, complete the dilution series to generate the remaining standards (250µL from Tube #2 to Tube #3, mix thoroughly, etc) up to and including Tube #7.
j) Finally, add 250µL **Sample Diluent** to another 1.5mL polypropylene tube (Tube # 8), which is the zero standard (0ng/mL).
3. **WASH BUFFER** (*Part#: 80-1287*)

   a) Bring the **20X Wash Buffer** to room temperature and swirl gently to dissolve any crystals that may have formed from storage.

   b) Dilute the 100mL of **20X Wash Buffer** with 1900mL of deionized or distilled water. Once diluted, the 1X Wash Buffer is stable at room temperature for up to 4 weeks. For longer-term storage, the Wash Buffer should be stored at 4°C.

   **NOTE:** 100mL of **20X Wash Buffer** has been provided in this kit, which is sufficient for the preparation of 2L of 1X Wash Buffer. The minimum required volume of 1X Wash Buffer is 520mL (if the complete plate is used at once). However additional 1X Wash Buffer is supplied to allow for multiple assays or alternative washing techniques.

4. **ANTI-HSP27** (*Part#: 80-1558*)

   a) Centrifuge the vial before removing the cap to ensure maximum product recovery.

   b) Dilute 22µL of **Anti-Hsp27** in 11mL of **Antibody Diluent** in a polypropylene tube to make a 1:500 dilution. If only using a portion of the plate, dilute only what is needed for the number of wells used.

   c) Mix gently by inversion.

   d) Reagent is now ready to be used in the Assay Procedure (see page 15).

   e) Do not re-use or store any remaining diluted **Anti-Hsp27**.
5.  **HRP CONJUGATE (Part#: 80-1557)**

   a) Centrifuge the vial before removing the cap to ensure maximum product recovery.
   b) Dilute 22µL of the **HRP Conjugate** in 11mL of the **HRP Conjugate Diluent** in a polypropylene tube to make a 1:500 dilution. If only using a portion of the plate, dilute only what is needed for the number of wells used.
   c) Mix gently by inversion.
   d) Reagent is now ready to be used in the Assay Procedure (see page 16).
   e) Do not re-use or store any remaining diluted **HRP Conjugate**.

**ASSAY PROCEDURE**

1. **DETERMINE THE REQUIRED NUMBER OF WELLS**

   a) Refer to the Hsp27 Plate Template on page 25 to determine the number of wells to be used.
   b) Remove the **Hsp27 Clear Microtiter Plate** from the packaging and note the color of the desiccant pack. Silica beads should be blue. Pink beads indicate that moisture is present and the performance of the plate may be compromised.
   c) If less than 96 pre-coated microtiter wells are needed, remove the excess wells from the frame and return them to the foil pouch.
   d) Reseal the pouch containing the unused wells and store at 4°C.
2. ADDITION OF STANDARDS AND SAMPLES

a) Add 100µL (in duplicate) of each of the following to appropriate wells:
   - Prepared Hsp27 Standard (Tube#1 through Tube #7)
   - Zero Standard (Sample Diluent, which represents 0ng/mL)
   - Samples (previously prepared - see Sample Preparation, page 10)

b) Cover wells with an adhesive plate sealer or plastic wrap and incubate at room temperature for 1 hour.

*NOTE*: For each step in the procedure, total dispensing time for the addition of the reagents and samples to the assay plate should not exceed 15 minutes.

3. WASHING

a) Aspirate liquid from all wells.

b) Add 300µL of 1X Wash Buffer to all wells, using a multi-channel pipette, manifold dispenser, automated microplate washer, or a squirt bottle.

c) Repeat the aspirating and washing 5 more times, for a total of 6 washes.

d) After the 6th addition of 1X Wash Buffer, aspirate the liquid from all wells. Invert the plate and carefully pat dry on clean paper towels.

4. ADDITION OF ANTI-HSP27 ANTIBODY

(previously diluted, see page 13)

a) Add 100µL of the previously diluted Anti-Hsp27 to each well, except the blank.

b) Cover wells with a fresh adhesive plate sealer (or plastic wrap) and incubate at room temperature for 1 hour.

c) Wash plate as described in Step #3.
5. ADDITION OF HRP CONJUGATE
(previously diluted, see page 14)

a) Add 100µL of the previously diluted HRP Conjugate to each well, except the blank.
b) Cover wells with a fresh adhesive plate sealer (or plastic wrap) and incubate at room temperature for 30 minutes.
c) Wash plate as described in Step #3.

6. ADDITION OF TMB SUBSTRATE AND STOP SOLUTION

a) Add 100µL of the TMB Substrate to each well. Color development should be visible within 1 minute of addition to the plate.
b) Incubate the plate at room temperature for 15 minutes (preferably in the dark).
c) Add 100µL of the Stop Solution 2 to each well in the same order that the TMB Substrate was added.

7. MEASURING ABSORBANCE

a) Set up the microplate reader according to the manufacturer's instructions.
b) Set wavelength at 450nm.
c) Measure the absorbance. If the plate cannot be read immediately, it should be covered and kept at room temperature. The absorbance should be read within 30 minutes of adding the Stop Solution 2.
CALCULATION OF RESULTS -
DETERMINATION OF HSP27 CONCENTRATIONS

1. Calculate the average of the duplicate absorbance measurements for each standard and sample.

2. Calculate the average of the duplicate absorbance measurements for the blank.

3. Subtract the average value obtained in Step#2 (blank) from the values obtained in Step#1 (standards and samples).

4. To generate the standard curve, calculate the log of each standard concentration and the corresponding mean net optical density produced in the assay. On a linear to linear scale, plot the log (concentrations) on the X-axis and the log (absorbance measurements) on the Y-axis. Determine the best fit line.

5. Interpolate the sample concentrations from the standard curve and multiply by the dilution factor for the final sample Hsp27 concentration. For example, if the sample was diluted 1:25 prior to assaying, the value generated from the standard curve must be multiplied by 25 to calculate the final sample Hsp27 concentration.

NOTE: Manufacturers of microplate readers usually offer accompanying software programs that will analyze data, plot standard curves and calculate sample concentrations. To set up the program for calculating the results, consult with the software instruction manual or contact the manufacturer of the microplate reader.
D. ASSAY PERFORMANCE CHARACTERISTICS

TYPICAL HSP27 STANDARD CURVE

![TYPICAL HSP27 STANDARD CURVE](image)

R² = 0.9954

PERFORMANCE CHARACTERISTICS

1. SENSITIVITY

   The sensitivity of the Hsp27 ELISA Kit has been determined to be 0.39ng/mL.
   The standard curve has a range of 0.39 - 25ng/mL.
2. **PRECISION**

   a) **Intra-Assay Precision (Within Run Precision)**
   To determine Intra-Assay Precision, three samples of known concentration were assayed thirty times on one plate. The Intra-Assay Coefficient of Variation of the Hsp27 ELISA Kit has been determined to be <10%.

   b) **Inter-Assay Precision (Between Run Precision)**
   To determine Inter-Assay Precision, three samples of known concentration were assayed thirty times in three individual assays. The Inter-Assay Coefficient of Variation of the Hsp27 ELISA Kit has been determined to be <10%.

3. **SPECIFICITY AND SPECIES REACTIVITY**

   The Hsp27 ELISA Kit is specific for Hsp27. The assay does not cross react with 250ng/mL of Hsp25 (mouse or rat) or αB-crystallin. The Hsp27 ELISA kit has been certified for the detection of human Hsp27.
LIMITATIONS OF THE ASSAY

- This assay has been validated for use with cell lysates, tissue extracts, serum, and plasma. Other sample types or matrices (e.g. urine, cerebrospinal fluid, cell culture supernatant, etc.) may contain interfering factors that can compromise the performance of the assay, or produce inaccurate results.

- Although this assay has been validated for use with cell lysates, tissue extracts, serum, and plasma, some samples may contain higher levels of interfering factors that can produce anomalous results.

- If samples generate greater values than the highest standard, the samples should be re-assayed at a higher sample dilution. Similarly, if samples generate lower values than the lowest standard, the samples should be re-assayed at a lower sample dilution.

- The use of assay reagents not provided in this kit or amendments to the protocol can compromise the performance of this assay.

- The components in each kit lot number have been quality assured and warranted in this specific combination only; please do not mix them with components from other kit lot numbers.
E. REFERENCES

REFERENCE


APPENDIX I
PREPARATION OF CELL LYSATES

1. For adherent cell lines, aspirate the media and wash the cells three times with phosphate buffered saline. Harvest the cells using appropriate, established methods (e.g. scraping, trypsinization) and centrifuge cells to pellet.
2. For non-adherent cell lines, centrifuge cells to pellet, aspirate media and wash cells three times with phosphate buffered saline.
3. Aspirate the supernatant from the final wash.
4. If necessary, the cell pellet can be frozen at -70°C and processed at a later date.
5. Calculate the amount of 1X Hsp27 Extraction Reagent that will be required. For every 1 X 10⁶ to 1 X 10⁷ cells, use 1mL of 1X Hsp27 Extraction Reagent.
6. Dilute an appropriate amount of 5X Hsp27 Extraction Reagent with cold (4°C) deionized or distilled water to generate the required volume of 1X Hsp27 Extraction Reagent. For example, if 5mL of 1X Hsp27 Extraction Reagent were required, dilute 1mL of the 5X Hsp27 Extraction Reagent with 4mL of cold deionized or distilled water.
7. Add protease inhibitors to the 1X Hsp27 Extraction Reagent. Examples of appropriate protease inhibitors include 0.1mM PMSF, 1µg/ml leupeptin, 1µg/mL aprotinin, 1µg/mL pepstatin. Alternatively, a protease inhibitor cocktail tablet can be added at a final 1X concentration. Protease inhibitor cocktail tablets are commercially available from a variety of scientific reagent vendors.
8. Resuspend the cell pellet with an appropriate volume of 1X Hsp27 Extraction Reagent supplemented with protease inhibitors. Pipet up and down to break up the cell pellet until the cell suspension is homogeneous and no clumps are visible.
9. Incubate 30 minutes on ice with occasional mixing or alternatively, samples can be briefly sonicated.
10. Transfer extracts to polypropylene microcentrifuge tubes and centrifuge at 21,000 x g for 10 minutes in a 4°C refrigerated microfuge.
11. Transfer the supernatants to labeled polypropylene tubes. When collecting the supernatant, avoid disturbing the cell pellet. The supernatant collected is the cell lysate, which is now ready for analysis using the Hsp27 ELISA kit. The resulting pellets can be discarded.
12. Alternatively, the cell lysates can be frozen at -70°C and assayed at a later date. It is recommended that a protein assay be performed and the lysates aliquotted to convenient amounts prior to storing at -70°C to avoid multiple freeze thaw cycles.
APPENDIX II
PREPARATION OF TISSUE EXTRACTS

1. Harvest tissue to be analyzed.
2. If necessary, tissues can be flash frozen, stored at -70°C and the extract prepared at a later time.
3. Calculate the amount of 1X Hsp27 Extraction Reagent that will be required. For each 0.5 cm³ piece of tissue, use 1 mL of 1X Hsp27 Extraction Reagent.
4. Dilute an appropriate amount of 5X Hsp27 Extraction Reagent with cold (4°C) deionized or distilled water to generate the required volume of 1X Hsp27 Extraction Reagent. For example, if 5 mL of 1X Hsp27 Extraction Reagent were required, dilute 1 mL of the 5X Hsp27 Extraction Reagent with 4 mL of cold deionized or distilled water.
5. Add protease inhibitors to the 1X Hsp27 Extraction Reagent. Examples of appropriate protease inhibitors include 0.1 mM PMSF, 1 µg/mL leupeptin, 1 µg/mL aprotinin, 1 µg/mL pepstatin. Alternatively, a protease inhibitor cocktail tablet can be added at a final 1X concentration. Protease inhibitor cocktail tablets are commercially available from a variety of scientific reagent vendors.
6. Place the tissue in a mortar and add a sufficient volume of liquid nitrogen to cover the tissue.
7. Allow the liquid nitrogen to evaporate. The tissue should be thoroughly frozen.
8. Grind the frozen tissue to a powder with a pestle.
9. Add an appropriate volume of 1X Hsp27 Extraction Reagent supplemented with protease inhibitors to the processed tissue.
10. Continue to homogenize the tissue with the pestle until the tissue suspension is homogeneous.
11. Transfer the extract to a polypropylene tube and centrifuge at 21,000 x g for 10 minutes in a 4°C refrigerated microfuge.
12. Transfer the supernatant to a labeled polypropylene tube. The supernatant collected is the tissue extract, which is now ready for analysis using the Hsp27 ELISA kit. The resulting pellet can be discarded.
13. Alternatively, the tissue extracts can be frozen at -70°C and assayed at a later date. It is recommended that a protein determination assay be performed and the extracts aliquotted to convenient amounts prior to storing at -70°C to avoid multiple freeze thaw cycles.
APPENDIX III
PREPARATION OF SERUM AND PLASMA

1. Collect whole blood in either clotting tubes for serum or EDTA tubes for plasma.
2. For serum, allow blood to clot for 30 minutes.
3. Centrifuge at 1000 x g for 15 minutes at 4°C.
4. Transfer supernatants into a clean tube.
5. The supernatant may be aliquoted and stored at or below -20°C, or used immediately in the assay.
Different chemicals may interfere with the Hsp27 ELISA kit. Although the effect of every chemical is not known, Enzo Life Sciences has tested the following chemicals to determine the level at which they may interfere with the kit. The compatible limit is defined as the chemical concentration at which the measurement of Hsp27 in a sample is inhibited by $\leq 10\%$.

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>COMPATIBLE LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprotinin</td>
<td>50µg/mL</td>
</tr>
<tr>
<td>β-mercaptoethanol</td>
<td>0.75mM</td>
</tr>
<tr>
<td>CHAPS</td>
<td>0.1% (w/v)</td>
</tr>
<tr>
<td>Dithiothreitol (DTT)</td>
<td>1mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>100mM</td>
</tr>
<tr>
<td>Glycerol</td>
<td>1% (v/v)</td>
</tr>
<tr>
<td>HEPES, pH 7.5</td>
<td>25mM</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>50µg/mL</td>
</tr>
<tr>
<td>Magnesium Chloride (MgCl2)</td>
<td>500mM</td>
</tr>
<tr>
<td>MOPS, pH 7.5</td>
<td>250mM</td>
</tr>
<tr>
<td>NP-40</td>
<td>1% (v/v)</td>
</tr>
<tr>
<td>Pepstatin A</td>
<td>50µg/mL</td>
</tr>
<tr>
<td>PMSF</td>
<td>1mM</td>
</tr>
<tr>
<td>SDS</td>
<td>0.01% (w/v)</td>
</tr>
<tr>
<td>Sodium Azide (NaN3)</td>
<td>2.5% (w/v)</td>
</tr>
<tr>
<td>Sodium Deoxycholate</td>
<td>0.02% (w/v)</td>
</tr>
<tr>
<td>Sodium Chloride (NaCl)</td>
<td>500mM</td>
</tr>
<tr>
<td>Sodium Phosphate, pH 7.2</td>
<td>150mM</td>
</tr>
<tr>
<td>Tris, pH 7.5</td>
<td>250mM</td>
</tr>
<tr>
<td>Triton-X100</td>
<td>0.5% (v/v)</td>
</tr>
<tr>
<td>Tween-20</td>
<td>5% (v/v)</td>
</tr>
</tbody>
</table>
APPENDIX V - Hsp27 Immunoassay Plate Template

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blank</td>
<td>Blank</td>
<td>2.5ng/mL</td>
<td>2.5ng/mL</td>
<td>12.5ng/mL</td>
<td>12.5ng/mL</td>
<td>6.25ng/mL</td>
<td>6.25ng/mL</td>
</tr>
<tr>
<td>2</td>
<td>3.125ng/mL</td>
<td>3.125ng/mL</td>
<td>1.56ng/mL</td>
<td>1.56ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>3</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>12.5ng/mL</td>
<td>12.5ng/mL</td>
<td>6.25ng/mL</td>
<td>6.25ng/mL</td>
<td>3.125ng/mL</td>
<td>3.125ng/mL</td>
</tr>
<tr>
<td>4</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>5</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>6</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>7</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>8</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>9</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>10</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>11</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
<tr>
<td>12</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0ng/mL</td>
<td>0.78ng/mL</td>
<td>0.78ng/mL</td>
<td>0.39ng/mL</td>
<td>0.39ng/mL</td>
</tr>
</tbody>
</table>
1. Bring to room temperature: Hsp27 Clear Microtiter Plate, 20X Wash Buffer, Sample Diluent, Antibody Diluent, HRP Conjugate Diluent, TMB Substrate and Stop Solution 2.
2. Prepare Recombinant Hsp27 Standard and samples in Sample Diluent.
3. Add 100µL prepared standards and samples in duplicate to wells of Anti-Hsp27 Plate. Cover immunoassay plate.
4. Incubate plate at room temperature for 1 hour.
5. Wash wells 6X with 1X Wash Buffer.
6. Add 100µL diluted Anti-Hsp27 to each well. Cover immunoassay plate.
7. Incubate plate at room temperature for 1 hour.
8. Wash wells 6X with 1X Wash Buffer.
9. Add 100µL diluted HRP Conjugate to each well. Cover immunoassay plate.
10. Incubate plate at room temperature for 30 minutes.
11. Wash wells 6X with 1X Wash Buffer.
12. Add 100µL TMB Substrate to each well.
13. Incubate at room temperature for 15 minutes (preferably in the dark).
14. Add 100µL Stop Solution 2 to each well.
15. Measure absorbance at 450nm.
16. Plot the Hsp27 standard curve and calculate Hsp27 sample concentrations.
**Use of Product**
This product contains research chemicals. As such, they should be used and handled only by or under the supervision of technically qualified individuals. This product is not intended for diagnostic or human use.

**Warranty**
Enzo Life Sciences International, Inc. makes no warranty of any kind, expressed or implied, which extends beyond the description of the product in this brochure, except that the material will meet our specifications at the time of delivery. Enzo Life Sciences International, Inc. makes no guarantee of results and assumes no liability for injuries, damages or penalties resulting from product use, since the conditions of handling and use are beyond our control.

www.enzolifesciences.com
Enabling Discovery in Life Science®

North/South America
ENZO LIFE SCIENCES INT’L, INC.
5120 Butler Pike
Plymouth Meeting, PA 19462-1202/USA
Tel. 1-800-942-0430/(610)941-0430
Fax (610) 941-9252
info-usa@enzolifesciences.com

Switzerland & Rest of Europe
ENZO LIFE SCIENCES AG
Industriestrasse 17, Postfach
CH-4415 Lausen / Switzerland
Tel. +41/0 61 926 89 89
Fax +41/0 61 926 89 79
info-ch@enzolifesciences.com

Germany
ENZO LIFE SCIENCES GmbH
Marie-Curie-Strasse 8
DE-79539 Lorrach / Germany
Tel. +49/0 7621 5500 526
Toll Free 0800 664 9518
Fax +49/0 7621 5500 527
info-de@enzolifesciences.com

Benelux
ENZO LIFE SCIENCES BVBA
Melkerijweg 3
BE-2240 Zandhoven / Belgium
Tel. +32/0 3 466 04 20
Fax +32/0 3 466 04 29
info-be@enzolifesciences.com

UK & Ireland
ENZO LIFE SCIENCES (UK) LTD.
Palatine House
Matford Court
Exeter EX2 8NL / UK
Tel. 0845 601 1488 (UK customers)
Tel. +44/0 1392 825900 (overseas)
Fax +44/0 1392 825910
info-uk@enzolifesciences.com

France
ENZO LIFE SCIENCES
c/o Covalab s.a.s.
13, Avenue Albert Einstein
FR-69100 Villeurbanne / France
Tel. +33 472 440 655
Fax +33 437 484 239
info-fr@enzolifesciences.com

July 20, 2010