Cellular Senescence Activity Assay
(SA-β-gal Activity, Fluorometric Format)

Catalog # ENZ-KIT129

96 Well Kit
USE FOR RESEARCH PURPOSES ONLY

Unless otherwise specified expressly on the packaging, all products sold hereunder are intended for and may be used for research purposes only and may not be used for food, drug, cosmetic or household use or for the diagnosis or treatment of human beings. Purchase does not include any right or license to use, develop or otherwise exploit these products commercially. Any commercial use, development or exploitation of these products or development using these products without the express written authorization of Enzo Life Sciences, Inc. is strictly prohibited. Buyer assumes all risk and liability for the use and/or results obtained by the use of the products covered by this invoice whether used singularly or in combination with other products.

LIMITED WARRANTY; DISCLAIMER OF WARRANTIES

These products are offered under a limited warranty. The products are guaranteed to meet all appropriate specifications described in the package insert at the time of shipment. Enzo Life Sciences’ sole obligation is to replace the product to the extent of the purchasing price. All claims must be made to Enzo Life Sciences, Inc., within five (5) days of receipt of order. THIS WARRANTY IS EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES OR LIABILITIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THE PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND ALL SUCH WARRANTIES (AND ANY OTHER WARRANTIES IMPLIED BY LAW) ARE EXPRESSLY DISCLAIMED.

TRADEMARKS AND PATENTS

Several Enzo Life Sciences products and product applications are covered by US and foreign patents and patents pending. Enzo is a trademark of Enzo Life Sciences, Inc.

FOR RESEARCH USE ONLY.
NOT FOR USE IN DIAGNOSTIC PROCEDURES.
TABLE OF CONTENTS

Introduction.. 4

Storage... 5

Materials Provided... 5

Other Materials Needed.. 5

Reagent Preparation... 5

Protocol .. 6

Typical Results .. 7

References .. 7

Contact Information .. 8

Please read entire booklet before proceeding with the assay.

Carefully note the handling and storage conditions of each kit component.

Please contact Enzo Life Sciences Technical Support if necessary.
INTRODUCTION

Normal primary cells proliferate in culture for a limited number of population doublings prior to undergoing terminal growth arrest and acquiring a senescent phenotype. This finite life span correlates with the age of the organism and with the life expectancy of the species from which the cells were obtained; such that the older the age or the shorter the life span, the less the ability of the cells to undergo population doubling. Senescent cells are characterized by an irreversible G₁ growth arrest involving the repression of genes that drive cell cycle progression and the upregulation of cell cycle inhibitors like p16^{INK4a}, p53, and its transcriptional target, p21^{CIP1}. They are resistant to mitogen-induced proliferation, and assume a characteristic enlarged, flattened morphology. Research into the pathways that positively regulate senescence and ways cells bypass senescence is therefore critical in understanding carcinogenesis. Normal cells have several mechanisms in place to protect against uncontrolled proliferation and tumorigenesis.

Senescent cells show common biochemical markers such as expression of an acidic senescence-associated β-galactosidase (SA-β-Gal) activity. While senescence has been characterized primarily in cultured cells, there is also evidence that it occurs in vivo. Cells expressing markers of senescence such as SA-β-Gal have been identified in normal tissues.

The 96-well Cellular Senescence Assay Kit provides an easy-to-use and efficient method to determine the cellular senescence by measuring SA-β-Gal activity using a fluorometric substrate. This quantitative assay uses cell lysate for both SA-β-galactosidase activity determination and normalization of samples containing different cell numbers. Each kit provides sufficient quantities to perform up to 120 assays in a 96-well plate.
STORAGE
Store SA-β-gal substrate solution protected from light at -20°C. Store all other components at room temperature.

MATERIALS PROVIDED
1. **2X Cell Lysis Buffer**: One 10 mL bottle
2. **2X Reaction Buffer**: One 10 mL bottle
3. **SA-β-Gal Substrate**: (20X) One 300 µL amber tube
4. **Stop Solution**: One 25 mL bottle

OTHER MATERIALS NEEDED
1. Senescent cells or tissue samples
2. 37°C Incubator
3. β-mercaptoethanol
4. 96-well plate suitable for a fluorescence plate reader
5. 96-well Fluorometer
6. Protein Assay Reagents

REAGENT PREPARATION
- **1X Cell Lysis Buffer**: Prepare a 1X Cell Lysis Buffer by diluting the provided 2X stock 1:2 in ddH₂O. Store the diluted solution at room temperature for up to six months. Immediately before use, add proper amount of proteinase inhibitors such as PMSF.
- **2X Assay Buffer**: Immediately before use, add β-mercaptoethanol to 2X Reaction Buffer at a final concentration of 10 mM and dilute 20X SA-β-Gal Substrate to 1X with 2X Reaction Buffer containing 10 mM β-mercaptoethanol. Do not store 2X Assay Buffer.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>96-well</th>
<th>24-well</th>
<th>6-well</th>
<th>10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X Cell Lysis Buffer</td>
<td>100 µL</td>
<td>400 µL</td>
<td>1000 µL</td>
<td>1500 µL</td>
</tr>
</tbody>
</table>
PROTOCOL

1. Aspirate the medium from the senescent cells.

2. Wash the cells once with 200 µL of cold 1X PBS and aspirate the wash.

3. Add 100 µL of cold 1X Cell Lysis Buffer (see the table above for the required amount of 1X Cell Lysis Buffer of other plate formats). Incubate at 4°C for 5 minutes. Transfer the whole lysate to a microcentrifuge tube and centrifuge 10 minutes at 4°C. Collect supernatant as cell lysate.

4. (Optional) Determine the total protein concentration of each cell lysate sample by protein assay.

5. Transfer 50 µL of the cell lysate to a 96-well plate. Add 50 µL of freshly prepared 2X Assay Buffer. Incubate the wells at 37°C protected from light for 1-3 hr.

6. Remove 50 µL of the reaction mixture to a 96-well plate suitable for fluorescence measurement. Stop the reaction by adding 200 µL of Stop solution.

7. Read fluorescence with a fluorescence plate reader at 360 nm (Excitation) / 465 nm (Emission).
TYPICAL RESULTS

The following figures demonstrate typical data with the 96-well Cellular Senescence Assay Kit. Fluorescence measurement was performed on SpectraMax Gemini XS Fluorometer (Molecular Devices) with a 355 nm/460 nm filter set. One should use the data below for reference only. This data should not be used to interpret actual results.

Figure 1: SA-β-Gal activity in Senescent Human Lung Fibroblast HFL-1 Cells. Normal HFL-1 cells with different passage numbers were lysed. Lysates were allowed to incubate with SA-β-Gal Substrate for 1 hr at 37°C. SA-β-Gal activities were measured as described in the Assay Protocol.

REFERENCES
