SUMOylation Kit

Catalog #BML-UW8955

For assessment of SUMOylation of target in vitro.

Note: SUMO-1 (human) (CT) polyclonal antibody (Prod. No. BML-PW9460) is changed to SUMO-1 (human) (NT) polyclonal antibody (Prod. No. BML-PW8330).

PLEASE NOTE:
ALL COMPONENTS ARE SHIPPED ON DRY ICE. UPON RECEIPT, THE SUMO-1 (HUMAN) (NT) POLYCLONAL ANTIBODY (BML-PW8330) AND SUMO-2/3 (HUMAN) (NT) POLYCLONAL ANTIBODY (BML-PW9465) CAN BE STORED AT -20 °C OR -80 °C. OTHER BIOCHEMICAL COMPONENTS SHOULD BE STORED AT -80°C FOR LONG TERM.
USE FOR RESEARCH PURPOSES ONLY

Unless otherwise specified expressly on the packaging, all products sold hereunder are intended for and may be used for research purposes only and may not be used for food, drug, cosmetic or household use or for the diagnosis or treatment of human beings. Purchase does not include any right or license to use, develop or otherwise exploit these products commercially. Any commercial use, development or exploitation of these products or development using these products without the express written authorization of Enzo Life Sciences, Inc. is strictly prohibited. Buyer assumes all risk and liability for the use and/or results obtained by the use of the products covered by this invoice whether used singularly or in combination with other products.

LIMITED WARRANTY; DISCLAIMER OF WARRANTIES

These products are offered under a limited warranty. The products are guaranteed to meet all appropriate specifications described in the package insert at the time of shipment. Enzo Life Sciences’ sole obligation is to replace the product to the extent of the purchasing price. All claims must be made to Enzo Life Sciences, Inc., within five (5) days of receipt of order. THIS WARRANTY IS EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES OR LIABILITIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THE PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND ALL SUCH WARRANTIES (AND ANY OTHER WARRANTIES IMPLIED BY LAW) ARE EXPRESSLY DISCLAIMED.

TRADEMARKS AND PATENTS

Several Enzo Life Sciences products and product applications are covered by US and foreign patents and patents pending.

FOR RESEARCH USE ONLY.
NOT FOR USE IN DIAGNOSTIC PROCEDURES.
Table of Contents

Background ... 2
Kit Description ... 3
Suggested Application .. 3
Kit Components .. 4
Storage .. 6
Other Materials Needed .. 6
SUMOylation Assay ... 7
Analysis by Western Blotting ... 8
Materials Needed ... 8
Example Procedure for Western Blotting .. 9
Example Results for Western Blotting ... 11
References ... 12
Contact Information ... 14

Please read entire booklet before proceeding with the assay.

Carefully note the handling and storage conditions of each kit component.

Please contact Enzo Life Sciences Technical Support if necessary.
BACKGROUND

Small ubiquitin-related modifier (SUMO) is a member of a family of ubiquitin-like proteins that regulates cellular function of a variety of proteins\(^1\). Four members of the SUMO family have been described in vertebrates: SUMO-1, the close homologues SUMO-2 and SUMO-3 with some 50% homology between SUMO-1 and SUMO-2/3 and SUMO-4. Tissue-specific SUMO-4, identified in human kidney, bears homology to SUMO-2/3 and variants of SUMO-4 may be associated with susceptibility to Type I diabetes\(^2\). Although having fairly low amino acid sequence identity with ubiquitin, the SUMO enzymes exhibit similar tertiary structures.

The mechanism for SUMO conjugation is analogous to that of the ubiquitin system, relying upon utilization of E1, E2 and (potentially) E3 cascade enzymes\(^3\). Unlike ubiquitinilation, which leads, among other things, to a degradative pathway, SUMO modification of target proteins is involved in nuclear protein targeting, formation of sub-nuclear complexes, regulation of transcriptional activities, and control of protein stability. For example, SUMO modification of p53 represents an additional regulator of p53 tumor repressor protein stability and may contribute to activation of the p53 response\(^4\). A short sequence containing the consensus \(\Psi\)-K-X-D/E (where lysine is the modified amino acid, \(\Psi\) is a large hydrophobic residue and X is any amino acid residue) is thought to be necessary for protein SUMOylation to occur\(^5\).

SUMO activating enzyme (E1) is a heterodimeric complex consisting of Aos1 and Uba2. Aos1 is similar to the N-terminal half of the E1 enzyme for ubiquitin whilst Uba2 has similarity to the C-terminal half, and contains the active site cysteine residue required for formation of thioester bonds\(^6\). However, Uba2 alone is not sufficient to catalyse SUMOylation.

Ubc9, the only SUMO E2 enzyme, conjugates activated SUMO (but not ubiquitin\(^7\)) and mediates its subsequent linkage, via C-terminal isopeptide bond formation, to a number of proteins, including RanGAP1, SP100, p53, IκBα and PML, without the absolute requirement for an E3 ubiquitin-protein ligase-like activity, at least in vitro\(^8\).

Several enzymes have been shown to possess SUMO E3 ligase-like properties that allow/enhance the SUMOylation of specific target proteins under certain conditions in vitro. For example PIAS1 (protein inhibitor of activated STAT1) functions as a SUMO ligase toward p53, or possibly as a tightly bound
regulator of it\(^9\). The nucleoporin RanBP2 (a component of the nucleocytoplasmic transport machinery together with SUMOylated RanGAP1\(^10\)) also has SUMO E3-like activity. RanBP2 directly interacts with the E2 enzyme Ubc9 and has been shown to strongly enhance SUMO transfer to SP100 but not to p53\(^11\). The ability to confer substrate specificity is a hallmark of E3 ligases. The importance of the role these apparent E3 ligases play in the \textit{in vivo} SUMOylation of proteins remains to be fully elucidated\(^12\).

KIT DESCRIPTION

This kit provides a means of generating SUMOylated proteins \textit{in vitro}, by covalent linkage of the carboxy-terminal of SUMO-1, -2 or -3 to specific lysine residues on the target protein via isopeptide bonds, using the SUMOylation enzyme cascade. A control target protein is provided together with all other necessary components. SUMO specific antibodies are provided for detection of SUMOylated proteins via SDS-PAGE and Western Blotting. This kit provides sufficient material for 20 x 20 \(\mu\)L reactions.

SUGGESTED APPLICATION

1. SUMO-modification of specific proteins \textit{in vitro} allow investigation of the effect SUMOylation has on enzyme function, stabilization, protein-protein interactions and, hence, it’s role in regulation of cellular processes, such as the p53 tumor repressor and NF-\(\kappa\)B pathways.

2. Demonstrate novel proteins are potential targets for SUMOylation under \textit{in vitro} conditions. Starting point for examining the role SUMOylation of a protein might play \textit{in vivo}.

3. Generate substrates for deSUMOylating enzymes, such as SENP1 (Prod. No. BML-UW9760) and SENP2 (Prod. No. BML-UW9765).

4. Test proteins for SUMO E3 ligase activity: does it facilitate or enhance SUMOylation of specific target proteins, particularly under conditions/enzyme concentrations that more closely represent those \textit{in vivo}.

5. Addition of known SUMO E3 ligase to facilitate/enhance target protein SUMOylation, particularly under conditions/enzyme concentrations that more closely represent those \textit{in vivo} (\textit{e.g.} RANBP2 [Prod. No. BML-
UW9455], shown to be a ligase for SP100 SUMOylation\(^1\)).

6. SUMOylation of proteins in cell lysates or crude fractions/preparations to facilitate investigation of their role/function in complex solutions.

7. Demonstrate SUMOylation of known proteins in specific lysates (confirm with target protein specific antibodies).

8. Use of cell lysate or crude fractions/preparations as source of SUMO E3 ligases to facilitate SUMOylation of purified target proteins in the presence of SUMOylation kit components.

Note: Protocol provided for application 1. Assay set-up can be readily modified for alternative applications by inclusion, omission or substitution of specific components.

KIT COMPONENTS

1. **20x SUMO Activating Enzyme Solution (SUMO E1):**
 SUMO activating enzyme E1 (human), (recombinant) (BML-UW9330-0020).
 Use 1 \(\mu\)L per 20 \(\mu\)L reaction.
 20 \(\mu\)L provided, sufficient for 20 x 20 \(\mu\)L reactions.

2. **20x SUMO Conjugating Enzyme Solution (SUMO E2):**
 Ubc9 (human), (recombinant) (untagged) (BML-UW9320-0020).
 Use 1 \(\mu\)L per 20 \(\mu\)L reaction.
 20 \(\mu\)L provided, sufficient for 20 x 20 \(\mu\)L reactions.

3. **20x SUMO Enzyme Solutions (SUMO-1, SUMO-2, SUMO-3):**
 SUMO-1 (human), (recombinant) (His-tag) (BML-UW9195-0020).
 SUMO-2 (human), (recombinant) (His-tag) (BML-UW9205-0020).
 SUMO-3 (human), (recombinant) (His-tag)
(BML-UW9215-0020).

Use 1 μL per 20 μL reaction.

20 μL of each SUMO enzyme provided, sufficient for 20 x 20 μL reactions.

4. **10x SUMOylation Buffer:**

(BML-KW9890)

Use 2 μL per 20 μL reaction.

40 μL provided, sufficient for 20 x 20 μL reactions.

5. **20x Control RanGAP1 SUMOylation Target Protein Solution:**

RanGAP1 fragment (human), (recombinant) (GST-tag)

(BML-UW9755-0020).

Use 1 μL per 20 μL reaction.

20 μL provided, sufficient for 20 x 20 μL reactions.

6. **20x Mg-ATP Solution:**

Mg^{2+}-ATP Activating solution

(BML-EW9805-0025).

Use 1 μL per 20 μL reaction. 25 μL provided, sufficient for 20 x 20 μL reactions.

Note: Ensure Mg-ATP is fully dissolved by warming to room temperature and mixing by vortex prior to use.

7. **SUMO Antibody Solutions:**

SUMO-1 (human) (NT), polyclonal antibody

(BML-PW8330-0025).

SUMO-2/3 (human) (NT), polyclonal antibody

(BML-PW9465-0025).

25 μL of each provided. Dilution of 1:1000 recommended for Western blotting.
STORAGE

All kit components should be stored at –80°C to ensure stability and activity. Avoid multiple freeze/thawing.

OTHER MATERIALS NEEDED

1. Microcentrifuge tubes (0.5 mL)

2. 2x Non-reducing SDS-PAGE gel loading buffer (e.g. BML-KW9880).
SUMOYLATION ASSAY

Assay described for the SUMOylation of purified target proteins and control RG1 protein in vitro.

Note: Assay conditions tested/optimized for a range of target proteins, including p53 tumor repressor and interferon inducible protein SP100, but may require adjustment for alternative enzymes.

The Ran GTPase-activating protein RanGAP1, a key regulator of the Ran GTP/GDP cycle required for the bi-directional transport of proteins and ribonucleoproteins across the nuclear pore complex, was the first protein shown to be post-translationally modified with SUMO\(^{13}\). RanGAP1 is provided as positive control for in vitro SUMOylation reactions. It is readily modified with all three SUMO enzymes in the presence of SUMO E1, SUMO E2 and Mg-ATP to give a single mono-SUMOylated product.

Assay protocol

Note: recommended total reaction volume = 20 μL. *Adjust dH\(_2\)O volume in accordance with available target protein concentration. A final assay concentration of 200nM is recommended as a starting point for target protein SUMOylation (e.g. use 4 μL of 1 μM target protein solution).

<table>
<thead>
<tr>
<th>Component</th>
<th>Target-SUMO</th>
<th>Sample (–ve control)</th>
<th>RG1-SUMO (±ve control)</th>
<th>RG1-SUMO (–ve control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH(_2)O</td>
<td>13(^*)</td>
<td>12.0(^*)</td>
<td>13.0</td>
<td>14.0</td>
</tr>
<tr>
<td>10x SUMOylation buffer</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>20x Mg-ATP</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>20x SUMO E1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>20x SUMO E2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>20x RanGAP1</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>*Target protein</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20x SUMO-1/2/3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Negative control reactions omitting Mg-ATP cofactors demonstrate formation of SUMOylated proteins is ATP dependent (required for E1 activation) and hence derived from the SUMO cascade.
Set-up assays/controls required as follows:

1. Add assay components to 0.5 mL tube(s) in order shown in table above. Keep all enzymes on ice throughout.
2. Mix tube contents gently.
3. Incubate at 37ºC for 60 minutes.
4. Quench assays by addition of 20 μL 2x Non-reducing SDS-PAGE gel loading buffer followed by heating to 95ºC for 5 minutes or 70ºC for 10 minutes.
5. Proceed directly to “Analysis by Western Blotting” or store at –20ºC until ready.

ANALYSIS BY WESTERN BLOTTING

Summary of analysis steps

1. Separate proteins by SDS-PAGE.
2. Western transfer to PVDF or nitrocellulose membrane.
4. Probe blot with either:
 a) SUMO antibodies supplied or
 b) Appropriate target protein specific primary antibody in conjunction with suitable secondary antibodies.
5. Develop with western blotting detection reagents.

Note: it is not recommended to use milk in blocking/antibody binding solutions. Please use 1-4% BSA in PBS or TBS Tween instead.

MATERIALS NEEDED

1. SDS-PAGE gels - User prepared (12% standard / 4-15% linear gradient) or preformed (e.g. ReadyGel, 4-15% Linear Gradient, BioRad, 161-1104).
2. Pre-stained SDS-PAGE molecular weight markers (e.g. See Blue Plus 2)
3. Nitrocellulose or PVDF membrane (e.g. Nitrocellulose Membrane (0.45μm, 20x20cm), BioRad, 162-0113) (e.g. Immobilon-P PVDF Membrane (0.45μm, 26.5cm (w)), Millipore, IPVH00010)
4. Anti-rabbit IgG secondary antibody (HRP linked) (e.g. ADI-SAB-300).

5. (If required) Target protein specific primary antibody (user supplied) and appropriate secondary antibody-HRP conjugate.

6. Western blotting detection reagents (e.g. ECL Reagent).

7. PBS solution 1X PBS.

8. PBS-T solution 1X PBS containing 0.2% Tween 20.

9. BSA/PBS-T blocking solution PBS-T containing 1% bovine serum albumin (BSA).

Note: TBS-T can be used as an alternative to PBS-T if required.

EXAMPLE PROCEDURE FOR WESTERN BLOTTING

Note: This protocol has been optimized using the materials indicated above. Using materials other than those listed may require additional optimization.

1. Apply ~10 µL of each quenched reaction to the SDS-PAGE gel alongside selected molecular weight markers, electrophorese, and transfer protein to PVDF or nitrocellulose membrane according to standard procedures.

2. Remove membrane from the transfer unit and block with BSA/PBS-T blocking buffer for 1 hour at room temperature on a rotor mixer.

 Note: Drying PVDF membrane prior to blocking, as per Manufacturers’ instructions, may considerably enhance results.

3. Wash membrane for 3 x 10 mins with PBS-T on a rocking platform at room temperature.

Detection

5. Incubate membrane with SUMO antibody solution 1 hour at room temperature or overnight at 4ºC on a rotor mixer. (Optimal dilution of antibody and incubation
condition need to be determined for individual detecting antibody.)

6. Wash membrane for 3 x 10 mins with PBS-T on a rocking platform.

7. Dilute appropriate anti-rabbit IgG secondary antibody (HRP-linked) according to the manufacturer’s instructions (e.g. 1:3000 in BSA/PBS-T).

8. Incubate membrane with secondary antibody solution for 1 hour at room temperature on a rocking platform, or as specified by the manufacturer.

9. Wash membrane for 6 x 10 mins with PBS-T on a rocking platform. (Final wash with PBS or TBS without Tween, is recommended if chemiluminescent substrate is going to be used.)

10. Proceed to step 17.

Specific target protein detection (if required)

11. Dilute appropriate target protein specific primary antibody according to manufacturer’s instructions.

12. Incubate membrane with target protein specific primary antibody solution overnight at 4ºC on a rotor mixer.

13. Wash membrane for 3 x 10 mins with PBS-T on a rocking platform.

14. Dilute appropriate secondary antibody in BSA/PBS-T according to the manufacturer’s instructions.

15. Incubate membrane with secondary antibody solution for 1 hour at room temperature on a rocking platform, or as specified by the manufacturer.

16. Wash membrane for 6 x 10 mins with PBS-T on a rocking platform.

Analysis

17. Prepare western blotting detection reagent according to the manufacturer’s instructions.

18. Incubate membrane with detection reagent for appropriate time.

19. Detect emitted signal by Luminography or CCD imaging instrument.
EXAMPLE RESULTS FOR WESTERN BLOTTING

Figure: Western Blot of SUMOylation Assays for control RanGAP1 target protein. Assays set-up and run as described in “Assay Protocol”. SUMOylated proteins were detected by Western Blotting as described in “Analysis by Western Blotting”. A: detected by SUMO-1, pAb (BML-PW8330), B: detected by SUMO-2/3, pAb (BML-PW9465).

Results demonstrate the formation of SUMOylated target proteins of the expected size in all ATP containing reactions. The absence of such conjugates in –ve control reactions demonstrates that their formation is ATP dependent (required for E1 activation) and hence derived from the SUMO cascade.

Note: Presence of band in 36 kDa region of some –ve controls can be attributed to small amounts of di-SUMO substrate not E2-SUMOconjugates (demonstrated by presence in control reaction omitting E2 and removal by treatment with 100 mM DTT [results not shown]).
REFERENCES

