Online Purchasing Account You are logged on as Guest. LoginRegister a New AccountShopping cart (Empty)
United States 

Rapamycin

Immunosuppressant
 
BML-A275-0005 5 mg 80.00 USD
 
BML-A275-0025 25 mg 255.00 USD
Do you need bulk/larger quantities?
 
Replaces Prod. #: ALX-380-004

Macrocyclic-triene antibiotic possessing potent immunosuppressant activity. It forms a complex with FKBP12 that binds to an effector, thus inhibiting IL-2 and other growth promoting lymphokines. The effectors were identified as FRAP (FKBP12 rapamycin-associated protein) and RAFT1 (rapamycin and KFBP12 target). Rapamycin/FKBP complex does not inhibit FRAP PI 4-kinase activity, but does inhibit FRAP autophosphorylation. Rapamycin induces inhibition of p70s6k, p33cdk2 and p34cdc2. Selectively blocks signaling leading to the activation of p70/85 S6 kinase. Enhances apoptosis. Activator of autophagy both in vitro and in vivo.

Product Specification

Alternative Name:Sirolimus, AY-22,989, RAPA, Rapamune
 
Formula:C51H79NO13
 
MW:914.2
 
CAS:53123-88-9
 
MI:14: 8114
 
RTECS:VE6250000
 
Purity:≥98% (HPLC)
 
Appearance:Off-white or yellow solid.
 
Solubility:Soluble in chloroform, DMSO (25mg/ml) or methanol.
 
Shipping:Ambient
 
Long Term Storage:-20°C
 
Use/Stability:Store, as supplied, at -20°C for up to 1 year. Store solutions at -20°C for up to 3 months.
 
Technical Info/Product Notes:Replacement for ADI-HPK-109.
 
ALX-380-004
Please mouse over
ALX-380-004

Product Literature References

An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response: A. De Gassart, et al.; PNAS 113, E117 (2016), Application(s): Cell culture, Abstract; Full Text
IL-2, IL-4, IFN-γ or TNF-α enhances BAFF-stimulated cell viability and survival by activating Erk1/2 and S6K1 pathways in neoplastic B-lymphoid cells: L. Gui, et al.; Cytokine 84, 37 (2016), Application(s): Cell culture, Abstract;
Lutein Attenuates Both Apoptosis and Autophagy upon Cobalt (II) Chloride-Induced Hypoxia in Rat Műller Cells: F.K. Fung, et al.; PLoS One 11, e0167828 (2016), Abstract;
Rapamycin ameliorates cadmium-induced activation of MAPK pathway and neuronal apoptosis by preventing mitochondrial ROS inactivation of PP2A: C. Xu, et al.; Neuropharmacology 105, 270 (2016), Application(s): Cell culture, Abstract;
Serotonin 5-HT2B Receptor-Stimulated DNA Synthesis and Proliferation Are Mediated by Autocrine Secretion of Transforming Growth Factor-α in Primary Cultures of Adult Rat Hepatocytes: K. Naito, et al.; Biol. Pharm. Bull. 39, 570 (2016), Application(s): Effects of Various Doses of Selective 5-HT2 Receptor Antagonists on DNA Synthesis and Proliferation in Hepatocytes, Abstract; Full Text
Sustained activation of mTORC1 in macrophages increases AMPKα-dependent autophagy to maintain cellular homeostasis: H. Pan, et al.; BMC Biochem. 17, 14 (2016), Application(s): Immunofluorescence microscopy - involvement in cell cycle processes, Abstract; Full Text
Transforming Growth Factor-β1 Increases DNA Methyltransferase 1 and -3a Expression Through Distinct Post-transcriptional Mechanisms in Lung Fibroblasts: H.B. Koh, et al.; J. Biol. Chem. 291, 19287 (2016), Application(s): Cell culture; mTOR inhibitor, normal primary human lung fibroblasts, Abstract; Full Text
Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression: W.Y. Bae, et al.; Biochem. Pharmacol. 98, 41 (2015), Application(s): Cell culture , Abstract;
Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating AMPA Receptors and Metabotropic Glutamate Receptors: W.L. Hsu, et al.; J. Biol. Chem. 390, 20748 (2015), Application(s): Cell Culture, Abstract; Full Text
ILT4 drives B7-H3 expression via PI3K/AKT/mTOR signalling and ILT4/B7-H3 co-expression correlates with poor prognosis in non-small cell lung cancer: P. Zhang, et al.; FEBS Lett. 589, 2248 (2015), Application(s): Cell Culture, Abstract;
Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells: Z.W. Zhou, et al.; Drug Des. Devel. Ther. 9, 1511 (2015), Application(s): Cell Culture, Assay, Abstract; Full Text
Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A: P.M. Wong, et al.; Nat. Commun. 6, 8048 (2015), Application(s): Cell Culture, Abstract; Full Text
Coxiella burnetii Type IV Secretion-Dependent Recruitment of Macrophage Autophagosomes: C.G. Winchell, et al.; Infect. Immun. 82, 2229 (2014), Application(s): Role of the T4SS in mediating PV interactions with autophagosomes, Abstract;
Anti-tumor efficacy of a hepatocellular carcinoma vaccine based on dendritic cells combined with tumor-derived autophagosomes in murine models: S. Su, et al.; Asian Pac. J. Cancer Prev. 14, 3109 (2013), Application(s): WB, Fluorescence Microscopy, PCR, Abstract; Full Text
Dealcoholated red wine induces autophagic and apoptotic cell death in an osteosarcoma cell line: I. Tedesco, et al.; Food Chem. Toxicol. 60, 377 (2013), Application(s): WB, Fluorescence Microscopy, Abstract;
Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells: A. Toulmay; J. Cell Biol. 202, 35 (2013), Application(s): Fluorescence Microscopy, Abstract; Full Text
Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase: Y. Liu, et al.; Neurochem. Int. 62, 458 (2013), Application(s): WB, IP, Confocal microscopy, Abstract;
Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts: C. Lerner, et al.; Aging Cell 12, 966 (2013), Application(s): WB, Abstract; Full Text
Remarkable inhibition of mTOR signaling by the combination of rapamycin and 1,4-phenylenebis(methylene)selenocyanate in human prostate cancer cells: N.D. Facompre, et al.; Int. J. Cancer 131, 2134 (2013), Application(s): WB, IP, Abstract; Full Text
Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer: C.G. Sanchez, et al.; Breast Cancer Res. 13, R21 (2011), Application(s): WB, Abstract; Full Text
Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability: A. Bitto, et al.; PloS One 5, e12592 (2010), Application(s): WB, Fluorescence Microscopy, Electron Microscopy , Abstract; Full Text
mTOR inhibitors (rapamycin and its derivatives) and nitrogen containing bisphosphonates: bi-functional compounds for the treatment of bone tumours: B. Ory, et al.; Curr. Med. Chem. 14, 1381 (2007), Review, Abstract;
Rapamycin: an anti-cancer immunosuppressant?: B.K. Law; Crit. Rev. Oncol. Hematol. 56, 47 (2005), Review, Abstract;
Rapamycin causes poorly reversible inhibition of mTOR and induces p53- independent apoptosis in human rhabdomyosarcoma cells: H. Hosoi, et al.; Cancer Res. 59, 886 (1999), Abstract;
Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability: S. Hashemolhosseini, et al.; J. Biol. Chem. 273, 14424 (1998), Abstract; Full Text
Rapamycin and p53 act on different pathways to induce G1 arrest in mammalian cells: S.M. Metcalfe, et al.; Oncogene 15, 1635 (1997), Abstract;
Rapamycin potentiates dexamethasone-induced apoptosis and inhibits JNK activity in lymphoblastoid cells: T. Ishizuka, et al.; BBRC 230, 386 (1997), Abstract;
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP: J. Choi et al.; Science 273, 239 (1996), Abstract;
Control of p70 s6 kinase by kinase activity of FRAP in vivo: E.J. Brown et al.; Nature 377, 441 (1995), Abstract;
Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro: Y. Shi, et al.; Cancer Res. 55, 1982 (1995), Abstract;
Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells: S. Muthukkumar, et al.; Transplantation 60, 264 (1995), Abstract;
The rapamycin and FKBP12 target (RAFT) displays phosphatidylinositol 4-kinase activity: D.M. Sabatini et al.; J. Biol. Chem. 270, 20875 (1995), Abstract;
A mammalian protein targeted by G1-arresting rapamycin-receptor complex: E.J. Brown, et al.; Nature 369, 756 (1994), Abstract;
RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin- dependent fashion and is homologous to yeast TORs: D.M. Sabatini, et al.; Cell 78, 35 (1994), Abstract;
Dissociation of pp70 ribosomal protein S6 kinase from insulin-stimulated glucose transport in 3T3-L1 adipocytes: D.C. Fingar et al.; J. Biol. Chem. 268, 3005 (1993), Abstract;
Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes: W.G. Morice, et al.; J. Biol. Chem. 268, 22737 (1993), Abstract; Full Text
Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with G1/S-phase growth arrest in T lymphocytes: W.G. Morice et al.; J. Biol. Chem. 268, 3734 (1993), Abstract;
Rapamycin: in vitro profile of a new immunosuppressive macrolide: S.N. Sehgal & C.C. Bansback; Ann. N. Y. Acad. Sci. 685, 58 (1993), Abstract;
Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases: J. Chung et al.; Cell 69, 1227 (1992), Abstract;
Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase: D.J. Price, et al.; Science 257, 973 (1992), Abstract;
FK506 and rapamycin: novel pharmacological probes of the immune response: J.Y. Chang et al.; Trends Pharmacol. Sci. 12, 218 (1991), Abstract;
Inhibition of T and B lymphocyte proliferation by rapamycin: J.E. Kay et al.; Immunology 72, 544 (1991), Abstract;
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast: J. Heitman et al.; J. Heitman et al. 253, 905 (1991), Abstract;
Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle: C. Vezina, et al.; J. Antibiot. (Tokyo) 28, 721 (1975), Abstract;
Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization: S.N. Sehgal, et al.; J. Antibiot. (Tokyo) 28, 727 (1975), Abstract;

Related Literature

Catalogs
Diabetes Catalog
Diabetes Catalog
Download as PDF

Brochures
Essential Research Tools for Neurodegeneration & Neural Signaling
Essential Research Tools for Neurodegeneration & Neural Signaling
Download as PDF

Technical Posters
Disease-Associated Stress Signaling
Disease-Associated Stress Signaling
Download as PDF

All new literature pieces

Recommend this page

 
For Research Use Only. Not for use in diagnostic procedures.
Keep in touch

©2017 Enzo Life Sciences, Inc.,