Online Purchasing Account You are logged on as Guest. LoginRegister a New AccountShopping cart (Empty)
United States 


Apoptosis inducer. Protein kinase inhibitor.
ALX-380-014-C100 100 µg 56.00 USD
ALX-380-014-C250 250 µg 107.00 USD
ALX-380-014-M001 1 mg 268.00 USD
ALX-380-014-M005 5 mg 375.00 USD
Do you need bulk/larger quantities?
Replaces Prod. #: BML-EI156

Model apoptosis inducer. Potent cell-permeable inhibitor of a variety of protein kinases, e.g. protein kinase C (PKC), CDK1/cyclin B (IC50~5nM), CDK2/cyclin A (IC50=7nM), CDK4/cyclin D (IC50=3-10µM), CDK5/p25 (IC50=4nM), GSK-3β (IC50=15nM), Pim-1 kinase (IC50=10nM).Binds do the ATP binding domain. Did not inhibit PKC-ζ. At 1µM induced apoptosis in CHO cells. Inhibits topoisomerase II directly by blocking transfer of phosphodiester bonds from DNA to active site tyrosine.

Product Specification

Alternative Name:Antibiotic AM-2282
Source:Isolated from Streptomyces staurosporeus.
MI:14: 8802
Purity:≥99% (HPLC)
Appearance:Off-white to green powder.
Solubility:Soluble in ethyl acetate, DMSO (25mg/ml) or dimethyl formamide (25mg/ml); only slightly soluble in chloroform and methanol. Insoluble in water.
Long Term Storage:+4°C
Use/Stability:Stable for at least 2 years after receipt when stored +4°C.
Handling:Protect from light and moisture. Store under inert gas.
Technical Info/Product Notes:Replacement for ADI-HPK-112
Please mouse over

Product Literature References

Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells: S. Zielke, et al.; Cell Death Dis. 9, 994 (2018), Abstract; Full Text
Cobalamin-Associated Superoxide Scavenging in Neuronal Cells Is a Potential Mechanism for Vitamin B12-Deprivation Optic Neuropathy: W. Chan, et al.; Am. J. Pathol. 188, 160 (2017), Abstract;
The Wnt Target Protein Peter Pan Defines a Novel p53-independent Nucleolar Stress-Response Pathway: A.S. Pfister, et al.; J. Biol. Chem. 290, 10905 (2017), Abstract; Full Text
Artesunate induces ROS-dependent apoptosis via a Bax-mediated intrinsic pathway in Huh-7 and Hep3B cells: Y. Pang, et al.; Exp. Cell Res. 16, 30161 (2016), Application(s): Flow cytometry analysis, Abstract;
Genetically encoded far-red fluorescent sensors for caspase-3 activity: O.A. Zlobovskaya, et al.; Biotechniques. 60, 62 (2016), Application(s): Induced apoptosis, Abstract; Full Text
Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers: L.D. Goldstein, et al.; Cell Rep. 16, 2605 (2016), Application(s): Cell Viability and DNA Fragmentation Analysis, Abstract;
Targeting of nucleotide-binding proteins by HAMLET-a conserved tumor cell death mechanism: J.C. Ho, et al.; Oncogene 35, 897 (2016), Application(s): Cell Culture, Abstract;
Triggering of Suicidal Erythrocyte Death by Bexarotene: A. Al Mamun Bhuyan, et al.; Cell. Physiol. Biochem. 40, 1239 (2016), Abstract;
A small molecule with anticancer and antimetastatic activities induces rapid mitochondrial associated necrosis in breast cancer: A. Bastian, et al.; J. Pharmacol. Exp. Ther. 353, 392 (2015), Application(s): Western Blotting, Abstract; Full Text
Artesunate induces apoptosis via a ROS-independent and Bax-mediated intrinsic pathway in HepG2 cells: G. Qin, et al.; Exp. Cell Res. 336, 308 (2015), Application(s): Cell Culture, Abstract;
Chemoresistance is associated with increased cytoprotective autophagy and diminished apoptosis in bladder cancer cells treated with the BH3 mimetic (-)-Gossypol (AT-101).: J. Mani, et al.; BMC Cancer 15, 224 (2015), Application(s): Cell Culture, Abstract; Full Text
The Wnt target Peter Pan defines a novel p53-independent nucleolar stress response pathway: A.S. Pfister, et al.; J. Biol. Chem. 290, 10905 (2015), Application(s): Cell Culture, Abstract; Full Text
Prolyl-4-hydroxylase domain 3 (PHD3) is a critical terminator for cell survival of macrophages under stress conditions: L. Swain, et al.; J. Leukoc. Biol. 96, 365 (2014), Abstract;
Clostridium difficile Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism: N.M. Chumbler, et al.; PLoS Pathog. 8, e1003072 (2012), Abstract; Full Text
Distinct roles of mitochondria- and ER-localized Bcl-xL in apoptosisresistance and Ca2+ homeostasis: C.O. Eno, et al.; Mol. Biol. Cell. 23, 2605 (2012), Abstract; Full Text
Staurosporine and cytochalasin D induce chondrogenesis by regulation of actin dynamics in different way: M. Kim, et al.; Exp. Mol. Med. 44, 521 (2012), Abstract; Full Text
Curcumin attenuates staurosporine-mediated death of retinal ganglion cells: B. Burugula, et al.; Invest. Ophthalmol. Vis. Sci. 52, 4263 (2011), Abstract; Full Text
FKBP51 protects 661w cell culture from staurosporine-induced apoptosis: D.R. Daudt & T. Yorio; Mol. Vis. 17, 1172 (2011), Abstract; Full Text
Neuronal differentiation by analogs of staurosporine: A.F. Thompson & L.A. Levin; Neurochem. Int. 56, 554 (2010), Abstract; Full Text
The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases: M. Rebsamen, et al.; Cell Death Differ. 15, 1804 (2008), Abstract;
The prevention of spontaneous apoptosis of follicular lymphoma B cells by a follicular dendritic cell line: involvement of caspase-3, caspase-8 and c-FLIP: J.J. Goval, et al.; Haematologica 93, 1169 (2008), Abstract; Full Text
Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002: M.D. Jacobs, et al.; J. Biol. Chem. 280, 13728 (2005), Abstract;
Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3: M. Rehm, et al.; J. Biol. Chem. 277, 24506 (2002), Abstract; Full Text
Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase: M.M. Hill, et al.; J. Biol. Chem. 276, 25643 (2001), Abstract; Full Text
Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis: D. Tang, et al.; J. Biol. Chem. 275, 9303 (2000), Abstract; Full Text
Changes in mitochondrial membrane potential during staurosporine- induced apoptosis in Jurkat cells: J.L. Scarlett, et al.; FEBS Lett. 475, 267 (2000), Abstract;
Dissociation of staurosporine-induced apoptosis from G2-M arrest in SW620 human colonic carcinoma cells: initiation of the apoptotic cascade is associated with elevation of the mitochondrial membrane potential (deltapsim): B.G. Heerdt, et al.; Cancer Res. 60, 6704 (2000), Abstract;
Equivalent death of P-glycoprotein expressing and nonexpressing cells induced by the protein kinase C inhibitor staurosporine: K.M. Tainton, et al.; BBRC 276, 231 (2000), Abstract;
Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium: G.N. Bijur, et al.; J. Biol. Chem. 275, 7583 (2000), Abstract; Full Text
Molecular mechanism of staurosporine-induced apoptosis in osteoblasts: H.J. Chae, et al.; Pharmacol. Res. 42, 373 (2000), Abstract;
Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c: D.G. Kirsch, et al.; J. Biol. Chem. 274, 21155 (1999), Abstract; Full Text
Characterization of the cell death process induced by staurosporine in human neuroblastoma cell lines: J. Boix, et al.; Neuropharmacology 36, 811 (1997), Abstract;
Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis: X. Wang et al.; EMBO J. 15, 1012 (1996), Abstract;
K252a and staurosporine microbial alkaloid toxins as prototype of neurotropic drugs: P. Lazarovici, et al.; Adv. Exp. Med. Biol. 391, 367 (1996), Review, Abstract;
Mechanism of topoisomerase II inhibition by staurosporine and other protein kinase inhibitors: P. Lassota et al.; J. Biol. Chem. 271, 26418 (1996), Abstract;
Staurosporine and ent-staurosporine: the first total synthesis, prospects for a regioselective approach, and activity profile: J.T. Link et al.; J. Am. Chem. Soc. 118, 2825 (1996),
Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway: D.A. Wiesner & G. Dawson; J. Neurochem 66, 1418 (1996), Abstract;
First total synthesis of Staurosporine and ent-Staurosporine: J.T. Link et al.; J. Am. Chem. Soc. 117, 552 (1995),
Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue: C.M Seynaeve et al.; Mol. Pharmacol. 45, 1207 (1994), Abstract;
Induction of a common pathway of apoptosis by staurosporine: R. Bertrand, et al.; Exp. Cell Res. 211, 314 (1994), Abstract;
Is staurosporine a specific inhibitor of protein kinase C in intact porcine coronary arteries?: M. Kageyama, et al.; J. Pharmacol. Exp. Ther. 259, 1019 (1991), Abstract;
Staurosporine: an effective inhibitor for Ca2+/calmodulin-dependent protein kinase II: N. Yanagihara, et al.; J. Neurochem. 56, 294 (1991), Abstract;
Staurosporine, a protein kinase C inhibitor interferes with proliferation of arterial smooth muscle cells: H. Matsumoto & Y. Sasaki; Biochem. Biophys. Res. Commun. 158, 105 (1989), Abstract;
Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases: U.T. Ruegg & G.M. Burgess; TIPS 10, 218 (1989), (Review), Abstract;
Contrasting actions of staurosporine, a protein kinase C inhibitor, on human neutrophils and primary mouse epidermal cells: T. Sako, et al.; Cancer Res. 48, 4646 (1988), Abstract;
Staurosporine inhibits tyrosine-specific protein kinase activity of Rous sarcoma virus transforming protein p60: N. Nakano, et al.; J. Antibiot. (Tokyo) 40, 706 (1987), Abstract;
Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase: T. Tamaoki, et al.; BBRC 135, 397 (1986), Abstract;
Staurosporine, a potent platelet aggregation inhibitor from a Streptomyces species: S. Oka, et al.; Agric. Biol. Chem. 50, 2723 (1986),
A. Furusaki, et al.; J. C. S. Chem. Commun. 800 (1978),
A new alkaloid AM-2282 of Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization: S. Omura, et al.; J. Antibiot. (Tokyo) 30, 275 (1977), Abstract;

Related Products


Flt inhibitor
120685-11-2, ≥98% (TLC) | Print as PDF
BML-EI370-0001 1 mg 128.00 USD
BML-EI370-0005 5 mg 508.00 USD
Do you need bulk/larger quantities?

Related Literature

Integrated solutions for screening Wnt regulators
Integrated solutions for screening Wnt regulators
Download as PDF

Diabetes Catalog
Diabetes Catalog
Download as PDF

All new literature pieces

Recommend this page

For Research Use Only. Not for use in diagnostic procedures.
Keep in touch

©2019 Enzo Life Sciences, Inc.,